On the Moment Map of a Multiplicity Free Action
Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 107-110
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The purpose of this note is to show that the Orbit Conjecture of C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another proof of that fact has been given by those authors in [BJLR2]. Their proof is based on their earlier results, announced together with the conjecture in [BJLR1]. We follow another path: using a geometric quantization result of Guillemin-Sternberg [G-S] we reduce the conjecture to a similar statement for a projective space, which is a special case of a characterization of projective smooth spherical varieties due to Brion [B2].
Affiliations des auteurs :
Andrzej Daszkiewicz 1 ; Tomasz Przebinda 1
@article{10_4064_cm_71_1_107_110,
author = {Andrzej Daszkiewicz and Tomasz Przebinda},
title = {On the {Moment} {Map} of a {Multiplicity} {Free} {Action}},
journal = {Colloquium Mathematicum},
pages = {107--110},
year = {1996},
volume = {71},
number = {1},
doi = {10.4064/cm-71-1-107-110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-107-110/}
}
TY - JOUR AU - Andrzej Daszkiewicz AU - Tomasz Przebinda TI - On the Moment Map of a Multiplicity Free Action JO - Colloquium Mathematicum PY - 1996 SP - 107 EP - 110 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-107-110/ DO - 10.4064/cm-71-1-107-110 LA - en ID - 10_4064_cm_71_1_107_110 ER -
Andrzej Daszkiewicz; Tomasz Przebinda. On the Moment Map of a Multiplicity Free Action. Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 107-110. doi: 10.4064/cm-71-1-107-110
Cité par Sources :