On the Moment Map of a Multiplicity Free Action
Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 107-110
The purpose of this note is to show that the Orbit Conjecture of C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another proof of that fact has been given by those authors in [BJLR2]. Their proof is based on their earlier results, announced together with the conjecture in [BJLR1]. We follow another path: using a geometric quantization result of Guillemin-Sternberg [G-S] we reduce the conjecture to a similar statement for a projective space, which is a special case of a characterization of projective smooth spherical varieties due to Brion [B2].
@article{10_4064_cm_71_1_107_110,
author = {Andrzej Daszkiewicz and Tomasz Przebinda},
title = {On the {Moment} {Map} of a {Multiplicity} {Free} {Action}},
journal = {Colloquium Mathematicum},
pages = {107--110},
year = {1996},
volume = {71},
number = {1},
doi = {10.4064/cm-71-1-107-110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-107-110/}
}
TY - JOUR AU - Andrzej Daszkiewicz AU - Tomasz Przebinda TI - On the Moment Map of a Multiplicity Free Action JO - Colloquium Mathematicum PY - 1996 SP - 107 EP - 110 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-71-1-107-110/ DO - 10.4064/cm-71-1-107-110 LA - en ID - 10_4064_cm_71_1_107_110 ER -
Andrzej Daszkiewicz; Tomasz Przebinda. On the Moment Map of a Multiplicity Free Action. Colloquium Mathematicum, Tome 71 (1996) no. 1, pp. 107-110. doi: 10.4064/cm-71-1-107-110
Cité par Sources :