Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 271-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that minimizers $u ∈ W^{1,n}$ of the functional $E_{
DOI : 10.4064/cm-70-2-271-289

Paweł Strzelecki 1

1
@article{10_4064_cm_70_2_271_289,
     author = {Pawe{\l} Strzelecki},
     title = {Asymptotics for the minimization of a {Ginzburg-Landau} energy in n dimensions},
     journal = {Colloquium Mathematicum},
     pages = {271--289},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-70-2-271-289},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/}
}
TY  - JOUR
AU  - Paweł Strzelecki
TI  - Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 271
EP  - 289
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/
DO  - 10.4064/cm-70-2-271-289
LA  - en
ID  - 10_4064_cm_70_2_271_289
ER  - 
%0 Journal Article
%A Paweł Strzelecki
%T Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
%J Colloquium Mathematicum
%D 1996
%P 271-289
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/
%R 10.4064/cm-70-2-271-289
%G en
%F 10_4064_cm_70_2_271_289
Paweł Strzelecki. Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions. Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 271-289. doi : 10.4064/cm-70-2-271-289. http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/

Cité par Sources :