Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 271-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that minimizers $u ∈ W^{1,n}$ of the functional $E_{
@article{10_4064_cm_70_2_271_289,
author = {Pawe{\l} Strzelecki},
title = {Asymptotics for the minimization of a {Ginzburg-Landau} energy in n dimensions},
journal = {Colloquium Mathematicum},
pages = {271--289},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {1996},
doi = {10.4064/cm-70-2-271-289},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/}
}
TY - JOUR AU - Paweł Strzelecki TI - Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions JO - Colloquium Mathematicum PY - 1996 SP - 271 EP - 289 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/ DO - 10.4064/cm-70-2-271-289 LA - en ID - 10_4064_cm_70_2_271_289 ER -
%0 Journal Article %A Paweł Strzelecki %T Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions %J Colloquium Mathematicum %D 1996 %P 271-289 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/ %R 10.4064/cm-70-2-271-289 %G en %F 10_4064_cm_70_2_271_289
Paweł Strzelecki. Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions. Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 271-289. doi: 10.4064/cm-70-2-271-289
Cité par Sources :