Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions
Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 271-289
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that minimizers $u ∈ W^{1,n}$ of the functional $E_{
@article{10_4064_cm_70_2_271_289,
author = {Pawe{\l} Strzelecki},
title = {Asymptotics for the minimization of a {Ginzburg-Landau} energy in n dimensions},
journal = {Colloquium Mathematicum},
pages = {271--289},
year = {1996},
volume = {70},
number = {2},
doi = {10.4064/cm-70-2-271-289},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/}
}
TY - JOUR AU - Paweł Strzelecki TI - Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions JO - Colloquium Mathematicum PY - 1996 SP - 271 EP - 289 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-271-289/ DO - 10.4064/cm-70-2-271-289 LA - en ID - 10_4064_cm_70_2_271_289 ER -
Paweł Strzelecki. Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions. Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 271-289. doi: 10.4064/cm-70-2-271-289
Cité par Sources :