Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields
Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 195-217.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a 3-dimensional vector field V with coordinates $V_x$, $V_y$ and $V_z$ that are homogeneous polynomials in the ring k[x,y,z], we give a necessary and sufficient condition for the existence of a Liouvillian first integral of V which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in the ring k[x,y,z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaff and orthogonal to the vector field V. Thus, our theorem links the existence of an object that belongs to some level of an extension tower with the existence of objects defined by means of the base differential ring k[x,y,z]. A self-contained proof of this result is given in the language of differential algebra. This method of finding first integrals in a given class of functions is an extension of the compatibility method introduced by J.-M. Strelcyn and S. Wojciechowski; and an old method of Darboux is a special case of it. We discuss all these relations and argue for the practical interest of our characterization despite an old open algorithmic problem.
DOI : 10.4064/cm-70-2-195-217

Jean Moulin Ollagnier 1

1
@article{10_4064_cm_70_2_195_217,
     author = {Jean Moulin Ollagnier},
     title = {Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields},
     journal = {Colloquium Mathematicum},
     pages = {195--217},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-70-2-195-217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-195-217/}
}
TY  - JOUR
AU  - Jean Moulin Ollagnier
TI  - Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 195
EP  - 217
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-195-217/
DO  - 10.4064/cm-70-2-195-217
LA  - en
ID  - 10_4064_cm_70_2_195_217
ER  - 
%0 Journal Article
%A Jean Moulin Ollagnier
%T Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields
%J Colloquium Mathematicum
%D 1996
%P 195-217
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-195-217/
%R 10.4064/cm-70-2-195-217
%G en
%F 10_4064_cm_70_2_195_217
Jean Moulin Ollagnier. Liouvillian first integrals of homogeneouspolynomial 3-dimensional vector fields. Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 195-217. doi : 10.4064/cm-70-2-195-217. http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-195-217/

Cité par Sources :