CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions
Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 165-179
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a Riemannian submersion π: M → N, where M is a CR-submanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by ω = 0 and give a necessary and sufficient condition for M to be a Sasakian manifold.
@article{10_4064_cm_70_2_165_179,
author = {Fumio Narita},
title = {CR-submanifolds of locally conformal {Kaehler} manifolds and {Riemannian} submersions},
journal = {Colloquium Mathematicum},
pages = {165--179},
year = {1996},
volume = {70},
number = {2},
doi = {10.4064/cm-70-2-165-179},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/}
}
TY - JOUR AU - Fumio Narita TI - CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions JO - Colloquium Mathematicum PY - 1996 SP - 165 EP - 179 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/ DO - 10.4064/cm-70-2-165-179 LA - en ID - 10_4064_cm_70_2_165_179 ER -
%0 Journal Article %A Fumio Narita %T CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions %J Colloquium Mathematicum %D 1996 %P 165-179 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/ %R 10.4064/cm-70-2-165-179 %G en %F 10_4064_cm_70_2_165_179
Fumio Narita. CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions. Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 165-179. doi: 10.4064/cm-70-2-165-179
Cité par Sources :