CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions
Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 165-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a Riemannian submersion π: M → N, where M is a CR-submanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by ω = 0 and give a necessary and sufficient condition for M to be a Sasakian manifold.
DOI : 10.4064/cm-70-2-165-179

Fumio Narita 1

1
@article{10_4064_cm_70_2_165_179,
     author = {Fumio Narita},
     title = {CR-submanifolds of locally conformal {Kaehler} manifolds and {Riemannian} submersions},
     journal = {Colloquium Mathematicum},
     pages = {165--179},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-70-2-165-179},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/}
}
TY  - JOUR
AU  - Fumio Narita
TI  - CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 165
EP  - 179
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/
DO  - 10.4064/cm-70-2-165-179
LA  - en
ID  - 10_4064_cm_70_2_165_179
ER  - 
%0 Journal Article
%A Fumio Narita
%T CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions
%J Colloquium Mathematicum
%D 1996
%P 165-179
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/
%R 10.4064/cm-70-2-165-179
%G en
%F 10_4064_cm_70_2_165_179
Fumio Narita. CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions. Colloquium Mathematicum, Tome 70 (1996) no. 2, pp. 165-179. doi : 10.4064/cm-70-2-165-179. http://geodesic.mathdoc.fr/articles/10.4064/cm-70-2-165-179/

Cité par Sources :