The polynomial hull of unions of convex sets in $ℂ^n$
Colloquium Mathematicum, Tome 70 (1996) no. 1, pp. 7-11
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that three pairwise disjoint, convex sets can be found, all congruent to a set of the form ${(z_1,z_2,z_3) ∈ ℂ^3: |z_1|^2 + |z_2|^2 + |z_3|^{2m} ≤ 1}$, such that their union has a non-trivial polynomial convex hull. This shows that not all holomorphic functions on the interior of the union can be approximated by polynomials in the open-closed topology.
Affiliations des auteurs :
Ulf Backlund 1 ; Anders Fällström 1
@article{10_4064_cm_70_1_7_11,
author = {Ulf Backlund and Anders F\"allstr\"om},
title = {The polynomial hull of unions of convex sets in $\ensuremath{\mathbb{C}}^n$},
journal = {Colloquium Mathematicum},
pages = {7--11},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {1996},
doi = {10.4064/cm-70-1-7-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-70-1-7-11/}
}
TY - JOUR AU - Ulf Backlund AU - Anders Fällström TI - The polynomial hull of unions of convex sets in $ℂ^n$ JO - Colloquium Mathematicum PY - 1996 SP - 7 EP - 11 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-70-1-7-11/ DO - 10.4064/cm-70-1-7-11 LA - en ID - 10_4064_cm_70_1_7_11 ER -
Ulf Backlund; Anders Fällström. The polynomial hull of unions of convex sets in $ℂ^n$. Colloquium Mathematicum, Tome 70 (1996) no. 1, pp. 7-11. doi: 10.4064/cm-70-1-7-11
Cité par Sources :