The Riemann theorem and divergent permutations
Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 275-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper the fundamental algebraic propeties of convergent and divergent permutations of ℕ are presented. A permutation p of ℕ is said to be divergent if at least one conditionally convergent series $∑ a_n$ of real terms is rearranged by p to a divergent series $∑ a_{p(n)}$. All other permutations of ℕ are called convergent. Some generalizations of the Riemann theorem about the set of limit points of the partial sums of rearrangements of a given conditionally convergent series are also studied.
DOI : 10.4064/cm-69-2-275-287

Roman Wituła 1

1
@article{10_4064_cm_69_2_275_287,
     author = {Roman Witu{\l}a},
     title = {The {Riemann} theorem and divergent permutations},
     journal = {Colloquium Mathematicum},
     pages = {275--287},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1996},
     doi = {10.4064/cm-69-2-275-287},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-275-287/}
}
TY  - JOUR
AU  - Roman Wituła
TI  - The Riemann theorem and divergent permutations
JO  - Colloquium Mathematicum
PY  - 1996
SP  - 275
EP  - 287
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-275-287/
DO  - 10.4064/cm-69-2-275-287
LA  - de
ID  - 10_4064_cm_69_2_275_287
ER  - 
%0 Journal Article
%A Roman Wituła
%T The Riemann theorem and divergent permutations
%J Colloquium Mathematicum
%D 1996
%P 275-287
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-275-287/
%R 10.4064/cm-69-2-275-287
%G de
%F 10_4064_cm_69_2_275_287
Roman Wituła. The Riemann theorem and divergent permutations. Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 275-287. doi : 10.4064/cm-69-2-275-287. http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-275-287/

Cité par Sources :