On the volume method in the study of Auerbach bases of finite-dimensional normed spaces
Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 267-270
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach bases and (iii) the finite-dimensional normed space X is an inner product space provided any two Auerbach bases are isometrically equivalent. Property (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J. Knowles and T. A. Cook [7].
@article{10_4064_cm_69_2_267_270,
author = {Anatolij Plichko},
title = {On the volume method in the study of {Auerbach} bases of finite-dimensional normed spaces},
journal = {Colloquium Mathematicum},
pages = {267--270},
year = {1996},
volume = {69},
number = {2},
doi = {10.4064/cm-69-2-267-270},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-267-270/}
}
TY - JOUR AU - Anatolij Plichko TI - On the volume method in the study of Auerbach bases of finite-dimensional normed spaces JO - Colloquium Mathematicum PY - 1996 SP - 267 EP - 270 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-267-270/ DO - 10.4064/cm-69-2-267-270 LA - en ID - 10_4064_cm_69_2_267_270 ER -
%0 Journal Article %A Anatolij Plichko %T On the volume method in the study of Auerbach bases of finite-dimensional normed spaces %J Colloquium Mathematicum %D 1996 %P 267-270 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-267-270/ %R 10.4064/cm-69-2-267-270 %G en %F 10_4064_cm_69_2_267_270
Anatolij Plichko. On the volume method in the study of Auerbach bases of finite-dimensional normed spaces. Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 267-270. doi: 10.4064/cm-69-2-267-270
Cité par Sources :