Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^{n}$
Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 213-238
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let
@article{10_4064_cm_69_2_213_238,
author = {Zhangjian Hu},
title = {Estimates for the integral means of holomorphic functions on bounded domains in $\ensuremath{\mathbb{C}}^{n}$},
journal = {Colloquium Mathematicum},
pages = {213--238},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {1996},
doi = {10.4064/cm-69-2-213-238},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-213-238/}
}
TY - JOUR
AU - Zhangjian Hu
TI - Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^{n}$
JO - Colloquium Mathematicum
PY - 1996
SP - 213
EP - 238
VL - 69
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-213-238/
DO - 10.4064/cm-69-2-213-238
LA - en
ID - 10_4064_cm_69_2_213_238
ER -
%0 Journal Article
%A Zhangjian Hu
%T Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^{n}$
%J Colloquium Mathematicum
%D 1996
%P 213-238
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-213-238/
%R 10.4064/cm-69-2-213-238
%G en
%F 10_4064_cm_69_2_213_238
Zhangjian Hu. Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^{n}$. Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 213-238. doi: 10.4064/cm-69-2-213-238
Cité par Sources :