The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra
Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 167-178
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to some problems concerning a convergence of pointwise type in the $L_2$-space over a von Neumann algebra M with a faithful normal state Φ [3]. Here $L_2 = L_2(M,Φ)$ is the completion of M under the norm $x → |x|^2 = Φ(x*x)^{1/2}$.
Affiliations des auteurs :
Ewa Hensz 1 ; Ryszard Jajte 1 ; Adam Paszkiewicz 1
@article{10_4064_cm_69_2_167_178,
author = {Ewa Hensz and Ryszard Jajte and Adam Paszkiewicz},
title = {The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von {Neumann} algebra},
journal = {Colloquium Mathematicum},
pages = {167--178},
year = {1996},
volume = {69},
number = {2},
doi = {10.4064/cm-69-2-167-178},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-167-178/}
}
TY - JOUR AU - Ewa Hensz AU - Ryszard Jajte AU - Adam Paszkiewicz TI - The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra JO - Colloquium Mathematicum PY - 1996 SP - 167 EP - 178 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-167-178/ DO - 10.4064/cm-69-2-167-178 LA - en ID - 10_4064_cm_69_2_167_178 ER -
%0 Journal Article %A Ewa Hensz %A Ryszard Jajte %A Adam Paszkiewicz %T The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra %J Colloquium Mathematicum %D 1996 %P 167-178 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-69-2-167-178/ %R 10.4064/cm-69-2-167-178 %G en %F 10_4064_cm_69_2_167_178
Ewa Hensz; Ryszard Jajte; Adam Paszkiewicz. The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra. Colloquium Mathematicum, Tome 69 (1996) no. 2, pp. 167-178. doi: 10.4064/cm-69-2-167-178
Cité par Sources :