On weighted inequalities for operators of potential type
Colloquium Mathematicum, Tome 69 (1996) no. 1, pp. 95-115
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper, we discuss a class of weighted inequalities for operators of potential type on homogeneous spaces. We give sufficient conditions for the weak and strong type weighted inequalities sup_{λ>0} λ|{x ∈ X : |T(fdσ)(x)|>λ }|_{ω}^{1/q} ≤ C (∫_{X} |f|^{p}dσ)^{1/p} and (∫_{X} |T(fdσ)|^{q}dω )^{1/q} ≤ C (∫_X |f|^{p}dσ )^{1/p} in the cases of 0 q p ≤ ∞ and 1 ≤ q p ∞, respectively, where T is an operator of potential type, and ω and σ are Borel measures on the homogeneous space X. We show that under certain restrictions on the measures those sufficient conditions are also necessary. A consequence is given for the fractional integrals in Euclidean spaces.
Keywords:
fractional maximal functions, operators of potential type, weights, norm inequalities
Affiliations des auteurs :
Shiying Zhao 1
@article{10_4064_cm_69_1_95_115,
author = {Shiying Zhao},
title = {On weighted inequalities for operators of potential type},
journal = {Colloquium Mathematicum},
pages = {95--115},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {1996},
doi = {10.4064/cm-69-1-95-115},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-69-1-95-115/}
}
TY - JOUR AU - Shiying Zhao TI - On weighted inequalities for operators of potential type JO - Colloquium Mathematicum PY - 1996 SP - 95 EP - 115 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-69-1-95-115/ DO - 10.4064/cm-69-1-95-115 LA - en ID - 10_4064_cm_69_1_95_115 ER -
Shiying Zhao. On weighted inequalities for operators of potential type. Colloquium Mathematicum, Tome 69 (1996) no. 1, pp. 95-115. doi: 10.4064/cm-69-1-95-115
Cité par Sources :