Minimax theorems with applications to convex metric spaces
Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 179-186.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.
DOI : 10.4064/cm-68-2-179-186

Jürgen Kindler 1

1
@article{10_4064_cm_68_2_179_186,
     author = {J\"urgen Kindler},
     title = {Minimax theorems with applications to convex metric spaces},
     journal = {Colloquium Mathematicum},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1995},
     doi = {10.4064/cm-68-2-179-186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-179-186/}
}
TY  - JOUR
AU  - Jürgen Kindler
TI  - Minimax theorems with applications to convex metric spaces
JO  - Colloquium Mathematicum
PY  - 1995
SP  - 179
EP  - 186
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-179-186/
DO  - 10.4064/cm-68-2-179-186
LA  - en
ID  - 10_4064_cm_68_2_179_186
ER  - 
%0 Journal Article
%A Jürgen Kindler
%T Minimax theorems with applications to convex metric spaces
%J Colloquium Mathematicum
%D 1995
%P 179-186
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-179-186/
%R 10.4064/cm-68-2-179-186
%G en
%F 10_4064_cm_68_2_179_186
Jürgen Kindler. Minimax theorems with applications to convex metric spaces. Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 179-186. doi : 10.4064/cm-68-2-179-186. http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-179-186/

Cité par Sources :