Minimax theorems with applications to convex metric spaces
Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 179-186
A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.
@article{10_4064_cm_68_2_179_186,
author = {J\"urgen Kindler},
title = {Minimax theorems with applications to convex metric spaces},
journal = {Colloquium Mathematicum},
pages = {179--186},
year = {1995},
volume = {68},
number = {2},
doi = {10.4064/cm-68-2-179-186},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-179-186/}
}
TY - JOUR AU - Jürgen Kindler TI - Minimax theorems with applications to convex metric spaces JO - Colloquium Mathematicum PY - 1995 SP - 179 EP - 186 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-2-179-186/ DO - 10.4064/cm-68-2-179-186 LA - en ID - 10_4064_cm_68_2_179_186 ER -
Jürgen Kindler. Minimax theorems with applications to convex metric spaces. Colloquium Mathematicum, Tome 68 (1995) no. 2, pp. 179-186. doi: 10.4064/cm-68-2-179-186
Cité par Sources :