A nilpotent Lie algebra and eigenvalue estimates
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 7-16
The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on $ℝ^n$ with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
@article{10_4064_cm_68_1_7_16,
author = {Jacek Dziuba\'nski and Andrzej Hulanicki and Joe Jenkins},
title = {A nilpotent {Lie} algebra and eigenvalue estimates},
journal = {Colloquium Mathematicum},
pages = {7--16},
year = {1995},
volume = {68},
number = {1},
doi = {10.4064/cm-68-1-7-16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-7-16/}
}
TY - JOUR AU - Jacek Dziubański AU - Andrzej Hulanicki AU - Joe Jenkins TI - A nilpotent Lie algebra and eigenvalue estimates JO - Colloquium Mathematicum PY - 1995 SP - 7 EP - 16 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-7-16/ DO - 10.4064/cm-68-1-7-16 LA - en ID - 10_4064_cm_68_1_7_16 ER -
Jacek Dziubański; Andrzej Hulanicki; Joe Jenkins. A nilpotent Lie algebra and eigenvalue estimates. Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 7-16. doi: 10.4064/cm-68-1-7-16
Cité par Sources :