A nilpotent Lie algebra and eigenvalue estimates
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 7-16.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on $ℝ^n$ with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
DOI : 10.4064/cm-68-1-7-16

Jacek Dziubański 1 ; Andrzej Hulanicki 1 ; Joe Jenkins 1

1
@article{10_4064_cm_68_1_7_16,
     author = {Jacek Dziuba\'nski and Andrzej Hulanicki and Joe Jenkins},
     title = {A nilpotent {Lie} algebra and eigenvalue estimates},
     journal = {Colloquium Mathematicum},
     pages = {7--16},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1995},
     doi = {10.4064/cm-68-1-7-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-7-16/}
}
TY  - JOUR
AU  - Jacek Dziubański
AU  - Andrzej Hulanicki
AU  - Joe Jenkins
TI  - A nilpotent Lie algebra and eigenvalue estimates
JO  - Colloquium Mathematicum
PY  - 1995
SP  - 7
EP  - 16
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-7-16/
DO  - 10.4064/cm-68-1-7-16
LA  - en
ID  - 10_4064_cm_68_1_7_16
ER  - 
%0 Journal Article
%A Jacek Dziubański
%A Andrzej Hulanicki
%A Joe Jenkins
%T A nilpotent Lie algebra and eigenvalue estimates
%J Colloquium Mathematicum
%D 1995
%P 7-16
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-7-16/
%R 10.4064/cm-68-1-7-16
%G en
%F 10_4064_cm_68_1_7_16
Jacek Dziubański; Andrzej Hulanicki; Joe Jenkins. A nilpotent Lie algebra and eigenvalue estimates. Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 7-16. doi : 10.4064/cm-68-1-7-16. http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-7-16/

Cité par Sources :