On integers not of the form n - φ (n)
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 55-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers $2^k·509203$ (k = 1, 2,...) is of the form n - φ(n).
DOI : 10.4064/cm-68-1-55-58

J. Browkin 1 ; A. Schinzel 1

1
@article{10_4064_cm_68_1_55_58,
     author = {J. Browkin and A. Schinzel},
     title = {On integers not of the form n - \ensuremath{\varphi} (n)},
     journal = {Colloquium Mathematicum},
     pages = {55--58},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1995},
     doi = {10.4064/cm-68-1-55-58},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-55-58/}
}
TY  - JOUR
AU  - J. Browkin
AU  - A. Schinzel
TI  - On integers not of the form n - φ (n)
JO  - Colloquium Mathematicum
PY  - 1995
SP  - 55
EP  - 58
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-55-58/
DO  - 10.4064/cm-68-1-55-58
LA  - en
ID  - 10_4064_cm_68_1_55_58
ER  - 
%0 Journal Article
%A J. Browkin
%A A. Schinzel
%T On integers not of the form n - φ (n)
%J Colloquium Mathematicum
%D 1995
%P 55-58
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-55-58/
%R 10.4064/cm-68-1-55-58
%G en
%F 10_4064_cm_68_1_55_58
J. Browkin; A. Schinzel. On integers not of the form n - φ (n). Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 55-58. doi : 10.4064/cm-68-1-55-58. http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-55-58/

Cité par Sources :