On integers not of the form n - φ (n)
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 55-58
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers $2^k·509203$ (k = 1, 2,...) is of the form n - φ(n).
@article{10_4064_cm_68_1_55_58,
author = {J. Browkin and A. Schinzel},
title = {On integers not of the form n - \ensuremath{\varphi} (n)},
journal = {Colloquium Mathematicum},
pages = {55--58},
year = {1995},
volume = {68},
number = {1},
doi = {10.4064/cm-68-1-55-58},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-55-58/}
}
J. Browkin; A. Schinzel. On integers not of the form n - φ (n). Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 55-58. doi: 10.4064/cm-68-1-55-58
Cité par Sources :