Planar rational compacta
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 49-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.
Affiliations des auteurs :
L. Feggos 1 ; S. Iliadis 1 ; S. Zafiridou 1
@article{10_4064_cm_68_1_49_54,
author = {L. Feggos and S. Iliadis and S. Zafiridou},
title = {Planar rational compacta},
journal = {Colloquium Mathematicum},
pages = {49--54},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {1995},
doi = {10.4064/cm-68-1-49-54},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-49-54/}
}
TY - JOUR AU - L. Feggos AU - S. Iliadis AU - S. Zafiridou TI - Planar rational compacta JO - Colloquium Mathematicum PY - 1995 SP - 49 EP - 54 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-49-54/ DO - 10.4064/cm-68-1-49-54 LA - en ID - 10_4064_cm_68_1_49_54 ER -
L. Feggos; S. Iliadis; S. Zafiridou. Planar rational compacta. Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 49-54. doi: 10.4064/cm-68-1-49-54
Cité par Sources :