Planar rational compacta
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 49-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.
DOI : 10.4064/cm-68-1-49-54

L. Feggos 1 ; S. Iliadis 1 ; S. Zafiridou 1

1
@article{10_4064_cm_68_1_49_54,
     author = {L. Feggos and S. Iliadis and S. Zafiridou},
     title = {Planar rational compacta},
     journal = {Colloquium Mathematicum},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1995},
     doi = {10.4064/cm-68-1-49-54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-49-54/}
}
TY  - JOUR
AU  - L. Feggos
AU  - S. Iliadis
AU  - S. Zafiridou
TI  - Planar rational compacta
JO  - Colloquium Mathematicum
PY  - 1995
SP  - 49
EP  - 54
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-49-54/
DO  - 10.4064/cm-68-1-49-54
LA  - en
ID  - 10_4064_cm_68_1_49_54
ER  - 
%0 Journal Article
%A L. Feggos
%A S. Iliadis
%A S. Zafiridou
%T Planar rational compacta
%J Colloquium Mathematicum
%D 1995
%P 49-54
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-49-54/
%R 10.4064/cm-68-1-49-54
%G en
%F 10_4064_cm_68_1_49_54
L. Feggos; S. Iliadis; S. Zafiridou. Planar rational compacta. Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 49-54. doi : 10.4064/cm-68-1-49-54. http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-49-54/

Cité par Sources :