On Müntz rational approximation in multivariables
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 39-47
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The present paper shows that for any $s$ sequences of real numbers, each with infinitely many distinct elements, ${λ_{n}^{j}}$, j=1,...,s, the rational combinations of $x_{1}^{λ_{m_1}^1} x_{2}^{λ_{m_2}^2}...x_{s}^{λ_{m_s}^s}$ are always dense in $C_{I^s}$.
@article{10_4064_cm_68_1_39_47,
author = {S. Zhou},
title = {On {M\"untz} rational approximation in multivariables},
journal = {Colloquium Mathematicum},
pages = {39--47},
year = {1995},
volume = {68},
number = {1},
doi = {10.4064/cm-68-1-39-47},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-39-47/}
}
S. Zhou. On Müntz rational approximation in multivariables. Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 39-47. doi: 10.4064/cm-68-1-39-47
Cité par Sources :