On Müntz rational approximation in multivariables
Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 39-47.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The present paper shows that for any $s$ sequences of real numbers, each with infinitely many distinct elements, ${λ_{n}^{j}}$, j=1,...,s, the rational combinations of $x_{1}^{λ_{m_1}^1} x_{2}^{λ_{m_2}^2}...x_{s}^{λ_{m_s}^s}$ are always dense in $C_{I^s}$.
DOI : 10.4064/cm-68-1-39-47

S. Zhou 1

1
@article{10_4064_cm_68_1_39_47,
     author = {S. Zhou},
     title = {On {M\"untz} rational approximation in multivariables},
     journal = {Colloquium Mathematicum},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1995},
     doi = {10.4064/cm-68-1-39-47},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-39-47/}
}
TY  - JOUR
AU  - S. Zhou
TI  - On Müntz rational approximation in multivariables
JO  - Colloquium Mathematicum
PY  - 1995
SP  - 39
EP  - 47
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-39-47/
DO  - 10.4064/cm-68-1-39-47
LA  - fr
ID  - 10_4064_cm_68_1_39_47
ER  - 
%0 Journal Article
%A S. Zhou
%T On Müntz rational approximation in multivariables
%J Colloquium Mathematicum
%D 1995
%P 39-47
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-39-47/
%R 10.4064/cm-68-1-39-47
%G fr
%F 10_4064_cm_68_1_39_47
S. Zhou. On Müntz rational approximation in multivariables. Colloquium Mathematicum, Tome 68 (1995) no. 1, pp. 39-47. doi : 10.4064/cm-68-1-39-47. http://geodesic.mathdoc.fr/articles/10.4064/cm-68-1-39-47/

Cité par Sources :