On positive Rockland operators
Colloquium Mathematicum, Tome 67 (1994) no. 2, pp. 197-216.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on $L_p(G;dg)$. Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on $L_2$ we prove that it is closed on each of the $L_p$-spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the $L_p$-spaces, p ∈ [1,∞]. Further extensions of these results to nonhomogeneous operators and general representations are also given.
DOI : 10.4064/cm-67-2-197-216

Pascal Auscher 1 ; A. ter Elst 1 ; Derek Robinson 1

1
@article{10_4064_cm_67_2_197_216,
     author = {Pascal Auscher and A. ter Elst and Derek Robinson},
     title = {On positive {Rockland} operators},
     journal = {Colloquium Mathematicum},
     pages = {197--216},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1994},
     doi = {10.4064/cm-67-2-197-216},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-67-2-197-216/}
}
TY  - JOUR
AU  - Pascal Auscher
AU  - A. ter Elst
AU  - Derek Robinson
TI  - On positive Rockland operators
JO  - Colloquium Mathematicum
PY  - 1994
SP  - 197
EP  - 216
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-67-2-197-216/
DO  - 10.4064/cm-67-2-197-216
LA  - en
ID  - 10_4064_cm_67_2_197_216
ER  - 
%0 Journal Article
%A Pascal Auscher
%A A. ter Elst
%A Derek Robinson
%T On positive Rockland operators
%J Colloquium Mathematicum
%D 1994
%P 197-216
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-67-2-197-216/
%R 10.4064/cm-67-2-197-216
%G en
%F 10_4064_cm_67_2_197_216
Pascal Auscher; A. ter Elst; Derek Robinson. On positive Rockland operators. Colloquium Mathematicum, Tome 67 (1994) no. 2, pp. 197-216. doi : 10.4064/cm-67-2-197-216. http://geodesic.mathdoc.fr/articles/10.4064/cm-67-2-197-216/

Cité par Sources :