Note on the Galois module structure of quadratic extensions
Colloquium Mathematicum, Tome 67 (1994) no. 1, pp. 15-19.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this note we will determine the associated order of relative extensions of algebraic number fields, which are cyclic of prime order p, assuming that the ground field is linearly disjoint to the pth cyclotomic field, $ℚ^{(p)}$. For quadratic extensions we will furthermore characterize when the ring of integers of the extension field is free over the associated order. All our proofs are quite elementary. As an application, we will determine the Galois module structure of $ℚ^{(n)}/ℚ^{(n)^+}$.
DOI : 10.4064/cm-67-1-15-19

Günter Lettl 1

1
@article{10_4064_cm_67_1_15_19,
     author = {G\"unter Lettl},
     title = {Note on the {Galois} module structure of quadratic extensions},
     journal = {Colloquium Mathematicum},
     pages = {15--19},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1994},
     doi = {10.4064/cm-67-1-15-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-15-19/}
}
TY  - JOUR
AU  - Günter Lettl
TI  - Note on the Galois module structure of quadratic extensions
JO  - Colloquium Mathematicum
PY  - 1994
SP  - 15
EP  - 19
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-15-19/
DO  - 10.4064/cm-67-1-15-19
LA  - en
ID  - 10_4064_cm_67_1_15_19
ER  - 
%0 Journal Article
%A Günter Lettl
%T Note on the Galois module structure of quadratic extensions
%J Colloquium Mathematicum
%D 1994
%P 15-19
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-15-19/
%R 10.4064/cm-67-1-15-19
%G en
%F 10_4064_cm_67_1_15_19
Günter Lettl. Note on the Galois module structure of quadratic extensions. Colloquium Mathematicum, Tome 67 (1994) no. 1, pp. 15-19. doi : 10.4064/cm-67-1-15-19. http://geodesic.mathdoc.fr/articles/10.4064/cm-67-1-15-19/

Cité par Sources :