Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
Colloquium Mathematicum, Tome 66 (1993) no. 2, pp. 319-334.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.
DOI : 10.4064/cm-66-2-319-334
Keywords: nonlinear boundary conditions, stationary solutions, global existence of solutions, parabolic-elliptic system

Piotr Biler 1 ; Tadeusz Nadzieja 1

1
@article{10_4064_cm_66_2_319_334,
     author = {Piotr Biler and Tadeusz Nadzieja},
     title = {Existence and nonexistence of solutions for a model of gravitational interaction of particles, {I}},
     journal = {Colloquium Mathematicum},
     pages = {319--334},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1993},
     doi = {10.4064/cm-66-2-319-334},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-319-334/}
}
TY  - JOUR
AU  - Piotr Biler
AU  - Tadeusz Nadzieja
TI  - Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 319
EP  - 334
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-319-334/
DO  - 10.4064/cm-66-2-319-334
LA  - en
ID  - 10_4064_cm_66_2_319_334
ER  - 
%0 Journal Article
%A Piotr Biler
%A Tadeusz Nadzieja
%T Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
%J Colloquium Mathematicum
%D 1993
%P 319-334
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-319-334/
%R 10.4064/cm-66-2-319-334
%G en
%F 10_4064_cm_66_2_319_334
Piotr Biler; Tadeusz Nadzieja. Existence and nonexistence of solutions for a model of gravitational interaction of particles, I. Colloquium Mathematicum, Tome 66 (1993) no. 2, pp. 319-334. doi : 10.4064/cm-66-2-319-334. http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-319-334/

Cité par Sources :