A remark on multiresolution analysis of $L^{p}(ℝ^{d})$
Colloquium Mathematicum, Tome 66 (1993) no. 2, pp. 257-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A condition on a scaling function which generates a multiresolution analysis of $L^p(ℝ^d)$ is given.
DOI : 10.4064/cm-66-2-257-264

Qiyu Sun 1

1
@article{10_4064_cm_66_2_257_264,
     author = {Qiyu Sun},
     title = {A remark on multiresolution analysis of $L^{p}(\ensuremath{\mathbb{R}}^{d})$},
     journal = {Colloquium Mathematicum},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1993},
     doi = {10.4064/cm-66-2-257-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-257-264/}
}
TY  - JOUR
AU  - Qiyu Sun
TI  - A remark on multiresolution analysis of $L^{p}(ℝ^{d})$
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 257
EP  - 264
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-257-264/
DO  - 10.4064/cm-66-2-257-264
LA  - en
ID  - 10_4064_cm_66_2_257_264
ER  - 
%0 Journal Article
%A Qiyu Sun
%T A remark on multiresolution analysis of $L^{p}(ℝ^{d})$
%J Colloquium Mathematicum
%D 1993
%P 257-264
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-257-264/
%R 10.4064/cm-66-2-257-264
%G en
%F 10_4064_cm_66_2_257_264
Qiyu Sun. A remark on multiresolution analysis of $L^{p}(ℝ^{d})$. Colloquium Mathematicum, Tome 66 (1993) no. 2, pp. 257-264. doi : 10.4064/cm-66-2-257-264. http://geodesic.mathdoc.fr/articles/10.4064/cm-66-2-257-264/

Cité par Sources :