The product of a function and a Boehmian
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 49-55.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be the class of all real-analytic functions and β the class of all Boehmians. We show that there is no continuous operation on β which is ordinary multiplication when restricted to A.
DOI : 10.4064/cm-66-1-49-55

Dennis Nemzer 1

1
@article{10_4064_cm_66_1_49_55,
     author = {Dennis Nemzer},
     title = {The product of a function and a {Boehmian}},
     journal = {Colloquium Mathematicum},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-66-1-49-55},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-49-55/}
}
TY  - JOUR
AU  - Dennis Nemzer
TI  - The product of a function and a Boehmian
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 49
EP  - 55
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-49-55/
DO  - 10.4064/cm-66-1-49-55
LA  - en
ID  - 10_4064_cm_66_1_49_55
ER  - 
%0 Journal Article
%A Dennis Nemzer
%T The product of a function and a Boehmian
%J Colloquium Mathematicum
%D 1993
%P 49-55
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-49-55/
%R 10.4064/cm-66-1-49-55
%G en
%F 10_4064_cm_66_1_49_55
Dennis Nemzer. The product of a function and a Boehmian. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 49-55. doi : 10.4064/cm-66-1-49-55. http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-49-55/

Cité par Sources :