A class of nonlocal parabolic problems occurring in statistical mechanics
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 131-145
We consider parabolic equations with nonlocal coefficients obtained from the Vlasov-Fokker-Planck equations with potentials. This class of equations includes the classical Debye system from electrochemistry as well as an evolution model of self-attracting clusters under friction and fluctuations. The local in time existence of solutions to these equations (with no-flux boundary conditions) and properties of stationary solutions are studied.
Keywords:
nonlinear boundary conditions, stationary solutions, existence of solutions, parabolic-elliptic system
@article{10_4064_cm_66_1_131_145,
author = {Piotr Biler and Tadeusz Nadzieja},
title = {A class of nonlocal parabolic problems occurring in statistical mechanics},
journal = {Colloquium Mathematicum},
pages = {131--145},
year = {1993},
volume = {66},
number = {1},
doi = {10.4064/cm-66-1-131-145},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/}
}
TY - JOUR AU - Piotr Biler AU - Tadeusz Nadzieja TI - A class of nonlocal parabolic problems occurring in statistical mechanics JO - Colloquium Mathematicum PY - 1993 SP - 131 EP - 145 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/ DO - 10.4064/cm-66-1-131-145 LA - en ID - 10_4064_cm_66_1_131_145 ER -
%0 Journal Article %A Piotr Biler %A Tadeusz Nadzieja %T A class of nonlocal parabolic problems occurring in statistical mechanics %J Colloquium Mathematicum %D 1993 %P 131-145 %V 66 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/ %R 10.4064/cm-66-1-131-145 %G en %F 10_4064_cm_66_1_131_145
Piotr Biler; Tadeusz Nadzieja. A class of nonlocal parabolic problems occurring in statistical mechanics. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 131-145. doi: 10.4064/cm-66-1-131-145
Cité par Sources :