A class of nonlocal parabolic problems occurring in statistical mechanics
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 131-145.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider parabolic equations with nonlocal coefficients obtained from the Vlasov-Fokker-Planck equations with potentials. This class of equations includes the classical Debye system from electrochemistry as well as an evolution model of self-attracting clusters under friction and fluctuations. The local in time existence of solutions to these equations (with no-flux boundary conditions) and properties of stationary solutions are studied.
DOI : 10.4064/cm-66-1-131-145
Keywords: nonlinear boundary conditions, stationary solutions, existence of solutions, parabolic-elliptic system

Piotr Biler 1 ; Tadeusz Nadzieja 1

1
@article{10_4064_cm_66_1_131_145,
     author = {Piotr Biler and Tadeusz Nadzieja},
     title = {A class of nonlocal parabolic problems occurring in statistical mechanics},
     journal = {Colloquium Mathematicum},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-66-1-131-145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/}
}
TY  - JOUR
AU  - Piotr Biler
AU  - Tadeusz Nadzieja
TI  - A class of nonlocal parabolic problems occurring in statistical mechanics
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 131
EP  - 145
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/
DO  - 10.4064/cm-66-1-131-145
LA  - en
ID  - 10_4064_cm_66_1_131_145
ER  - 
%0 Journal Article
%A Piotr Biler
%A Tadeusz Nadzieja
%T A class of nonlocal parabolic problems occurring in statistical mechanics
%J Colloquium Mathematicum
%D 1993
%P 131-145
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/
%R 10.4064/cm-66-1-131-145
%G en
%F 10_4064_cm_66_1_131_145
Piotr Biler; Tadeusz Nadzieja. A class of nonlocal parabolic problems occurring in statistical mechanics. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 131-145. doi : 10.4064/cm-66-1-131-145. http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-131-145/

Cité par Sources :