Three methods for the study of semilinear equations at resonance
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 109-12
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Three methods for the study of the solvability of semilinear equations with noninvertible linear parts are compared: the alternative method, the continuation method of Mawhin and a new perturbation method [22]-[27]. Some extension of the last method and applications to differential equations in Banach spaces are presented.
@article{10_4064_cm_66_1_109_12,
author = {Bogdan Przeradzki},
title = {Three methods for the study of semilinear equations at resonance},
journal = {Colloquium Mathematicum},
pages = {109--12},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {1993},
doi = {10.4064/cm-66-1-109-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-109-12/}
}
TY - JOUR AU - Bogdan Przeradzki TI - Three methods for the study of semilinear equations at resonance JO - Colloquium Mathematicum PY - 1993 SP - 109 EP - 12 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-109-12/ DO - 10.4064/cm-66-1-109-12 LA - en ID - 10_4064_cm_66_1_109_12 ER -
Bogdan Przeradzki. Three methods for the study of semilinear equations at resonance. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 109-12. doi: 10.4064/cm-66-1-109-12
Cité par Sources :