Three methods for the study of semilinear equations at resonance
Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 109-12
Three methods for the study of the solvability of semilinear equations with noninvertible linear parts are compared: the alternative method, the continuation method of Mawhin and a new perturbation method [22]-[27]. Some extension of the last method and applications to differential equations in Banach spaces are presented.
@article{10_4064_cm_66_1_109_12,
author = {Bogdan Przeradzki},
title = {Three methods for the study of semilinear equations at resonance},
journal = {Colloquium Mathematicum},
pages = {109--12},
year = {1993},
volume = {66},
number = {1},
doi = {10.4064/cm-66-1-109-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-109-12/}
}
TY - JOUR AU - Bogdan Przeradzki TI - Three methods for the study of semilinear equations at resonance JO - Colloquium Mathematicum PY - 1993 SP - 109 EP - 12 VL - 66 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-66-1-109-12/ DO - 10.4064/cm-66-1-109-12 LA - en ID - 10_4064_cm_66_1_109_12 ER -
Bogdan Przeradzki. Three methods for the study of semilinear equations at resonance. Colloquium Mathematicum, Tome 66 (1993) no. 1, pp. 109-12. doi: 10.4064/cm-66-1-109-12
Cité par Sources :