Bounds for Chern classes of semistable vector bundles on complex projective spaces
Colloquium Mathematicum, Tome 65 (1993) no. 2, pp. 277-290.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on $ℙ^n$. Non-negative polynomials in Chern classes are constructed for 4-vector bundles on $ℙ^4$ and a generalization of the presented method to r-bundles on $ℙ^n$ is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.
DOI : 10.4064/cm-65-2-277-290

Wiera Dobrowolska 1

1
@article{10_4064_cm_65_2_277_290,
     author = {Wiera Dobrowolska},
     title = {Bounds for {Chern} classes of semistable vector bundles on complex projective spaces},
     journal = {Colloquium Mathematicum},
     pages = {277--290},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1993},
     doi = {10.4064/cm-65-2-277-290},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/}
}
TY  - JOUR
AU  - Wiera Dobrowolska
TI  - Bounds for Chern classes of semistable vector bundles on complex projective spaces
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 277
EP  - 290
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/
DO  - 10.4064/cm-65-2-277-290
LA  - en
ID  - 10_4064_cm_65_2_277_290
ER  - 
%0 Journal Article
%A Wiera Dobrowolska
%T Bounds for Chern classes of semistable vector bundles on complex projective spaces
%J Colloquium Mathematicum
%D 1993
%P 277-290
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/
%R 10.4064/cm-65-2-277-290
%G en
%F 10_4064_cm_65_2_277_290
Wiera Dobrowolska. Bounds for Chern classes of semistable vector bundles on complex projective spaces. Colloquium Mathematicum, Tome 65 (1993) no. 2, pp. 277-290. doi : 10.4064/cm-65-2-277-290. http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/

Cité par Sources :