Bounds for Chern classes of semistable vector bundles on complex projective spaces
Colloquium Mathematicum, Tome 65 (1993) no. 2, pp. 277-290
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on $ℙ^n$. Non-negative polynomials in Chern classes are constructed for 4-vector bundles on $ℙ^4$ and a generalization of the presented method to r-bundles on $ℙ^n$ is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.
@article{10_4064_cm_65_2_277_290,
author = {Wiera Dobrowolska},
title = {Bounds for {Chern} classes of semistable vector bundles on complex projective spaces},
journal = {Colloquium Mathematicum},
pages = {277--290},
year = {1993},
volume = {65},
number = {2},
doi = {10.4064/cm-65-2-277-290},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/}
}
TY - JOUR AU - Wiera Dobrowolska TI - Bounds for Chern classes of semistable vector bundles on complex projective spaces JO - Colloquium Mathematicum PY - 1993 SP - 277 EP - 290 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/ DO - 10.4064/cm-65-2-277-290 LA - en ID - 10_4064_cm_65_2_277_290 ER -
%0 Journal Article %A Wiera Dobrowolska %T Bounds for Chern classes of semistable vector bundles on complex projective spaces %J Colloquium Mathematicum %D 1993 %P 277-290 %V 65 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm-65-2-277-290/ %R 10.4064/cm-65-2-277-290 %G en %F 10_4064_cm_65_2_277_290
Wiera Dobrowolska. Bounds for Chern classes of semistable vector bundles on complex projective spaces. Colloquium Mathematicum, Tome 65 (1993) no. 2, pp. 277-290. doi: 10.4064/cm-65-2-277-290
Cité par Sources :