Finite union of H-sets and countable compact sets
Colloquium Mathematicum, Tome 65 (1993) no. 1, p. 83 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis, directed by A. Louveau, the existence of a countable compact set which is not a finite union of Dirichlet sets. This result, quoted in [3], is weaker because all Dirichlet sets belong to H. Other new results about the class H and similar classes of thin sets can be found in [4], [1] and [5].
DOI : 10.4064/cm-65-1-83

Sylvain Kahane 1

1
@article{10_4064_cm_65_1_83,
     author = {Sylvain Kahane},
     title = {Finite union of {H-sets} and countable compact sets},
     journal = {Colloquium Mathematicum},
     pages = {83--83},
     year = {1993},
     volume = {65},
     number = {1},
     doi = {10.4064/cm-65-1-83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/}
}
TY  - JOUR
AU  - Sylvain Kahane
TI  - Finite union of H-sets and countable compact sets
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 83
EP  - 83
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/
DO  - 10.4064/cm-65-1-83
LA  - en
ID  - 10_4064_cm_65_1_83
ER  - 
%0 Journal Article
%A Sylvain Kahane
%T Finite union of H-sets and countable compact sets
%J Colloquium Mathematicum
%D 1993
%P 83-83
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/
%R 10.4064/cm-65-1-83
%G en
%F 10_4064_cm_65_1_83
Sylvain Kahane. Finite union of H-sets and countable compact sets. Colloquium Mathematicum, Tome 65 (1993) no. 1, p. 83. doi: 10.4064/cm-65-1-83

Cité par Sources :