Finite union of H-sets and countable compact sets
Colloquium Mathematicum, Tome 65 (1993) no. 1, p. 83.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis, directed by A. Louveau, the existence of a countable compact set which is not a finite union of Dirichlet sets. This result, quoted in [3], is weaker because all Dirichlet sets belong to H. Other new results about the class H and similar classes of thin sets can be found in [4], [1] and [5].
DOI : 10.4064/cm-65-1-83

Sylvain Kahane 1

1
@article{10_4064_cm_65_1_83,
     author = {Sylvain Kahane},
     title = {Finite union of {H-sets} and countable compact sets},
     journal = {Colloquium Mathematicum},
     pages = {83--83},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-65-1-83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/}
}
TY  - JOUR
AU  - Sylvain Kahane
TI  - Finite union of H-sets and countable compact sets
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 83
EP  - 83
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/
DO  - 10.4064/cm-65-1-83
LA  - en
ID  - 10_4064_cm_65_1_83
ER  - 
%0 Journal Article
%A Sylvain Kahane
%T Finite union of H-sets and countable compact sets
%J Colloquium Mathematicum
%D 1993
%P 83-83
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/
%R 10.4064/cm-65-1-83
%G en
%F 10_4064_cm_65_1_83
Sylvain Kahane. Finite union of H-sets and countable compact sets. Colloquium Mathematicum, Tome 65 (1993) no. 1, p. 83. doi : 10.4064/cm-65-1-83. http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-83/

Cité par Sources :