An estimate for the number of reducible Bessel polynomials of bounded degree
Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 65-68.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-65-1-65-68

M. Filaseta 1 ; S. Graham 1

1
@article{10_4064_cm_65_1_65_68,
     author = {M. Filaseta and S. Graham},
     title = {An estimate for the number of reducible {Bessel} polynomials of bounded degree},
     journal = {Colloquium Mathematicum},
     pages = {65--68},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-65-1-65-68},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-65-68/}
}
TY  - JOUR
AU  - M. Filaseta
AU  - S. Graham
TI  - An estimate for the number of reducible Bessel polynomials of bounded degree
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 65
EP  - 68
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-65-68/
DO  - 10.4064/cm-65-1-65-68
LA  - en
ID  - 10_4064_cm_65_1_65_68
ER  - 
%0 Journal Article
%A M. Filaseta
%A S. Graham
%T An estimate for the number of reducible Bessel polynomials of bounded degree
%J Colloquium Mathematicum
%D 1993
%P 65-68
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-65-68/
%R 10.4064/cm-65-1-65-68
%G en
%F 10_4064_cm_65_1_65_68
M. Filaseta; S. Graham. An estimate for the number of reducible Bessel polynomials of bounded degree. Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 65-68. doi : 10.4064/cm-65-1-65-68. http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-65-68/

Cité par Sources :