Some properties of the Pisier-Zu interpolation spaces
Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 43-50
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a closed subset I of the interval [0,1] we let A(I) = [v_1(I),C(I)]_{(1/2)2}. We show that A(I) is isometric to a 1-complemented subspace of A(0,1), and that the Szlenk index of A(I) is larger than the Cantor index of I. We also investigate, for ordinals η ω_1, the bases structures of A(η), A*(η), and $A_{*}(η)$ [the isometric predual of A(η)]. All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces $[v_1(I),C(I)]_{θq}$.
@article{10_4064_cm_65_1_43_50,
author = {A. Sersouri},
title = {Some properties of the {Pisier-Zu} interpolation spaces},
journal = {Colloquium Mathematicum},
pages = {43--50},
year = {1993},
volume = {65},
number = {1},
doi = {10.4064/cm-65-1-43-50},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-43-50/}
}
A. Sersouri. Some properties of the Pisier-Zu interpolation spaces. Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 43-50. doi: 10.4064/cm-65-1-43-50
Cité par Sources :