On an extended contact Bochner curvature tensor on contact metric manifolds
Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 33-41
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
On Sasakian manifolds, Matsumoto and Chūman [3] defined a contact Bochner curvature tensor (see also Yano [7]) which is invariant under D-homothetic deformations (for D-homothetic deformations, see Tanno [5]). On the other hand, Tricerri and Vanhecke [6] defined a general Bochner curvature tensor with conformal invariance on almost Hermitian manifolds. In this paper we define an extended contact Bochner curvature tensor which is invariant under D-homothetic deformations of contact metric manifolds; we call it the EK-contact Bochner curvature tensor. We show that a contact metric manifold with vanishing EK-contact Bochner curvature tensor is a Sasakian manifold.
@article{10_4064_cm_65_1_33_41,
author = {Hiroshi Endo},
title = {On an extended contact {Bochner} curvature tensor on contact metric manifolds},
journal = {Colloquium Mathematicum},
pages = {33--41},
year = {1993},
volume = {65},
number = {1},
doi = {10.4064/cm-65-1-33-41},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-33-41/}
}
TY - JOUR AU - Hiroshi Endo TI - On an extended contact Bochner curvature tensor on contact metric manifolds JO - Colloquium Mathematicum PY - 1993 SP - 33 EP - 41 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-33-41/ DO - 10.4064/cm-65-1-33-41 LA - en ID - 10_4064_cm_65_1_33_41 ER -
Hiroshi Endo. On an extended contact Bochner curvature tensor on contact metric manifolds. Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 33-41. doi: 10.4064/cm-65-1-33-41
Cité par Sources :