On an extended contact Bochner curvature tensor on contact metric manifolds
Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 33-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On Sasakian manifolds, Matsumoto and Chūman [3] defined a contact Bochner curvature tensor (see also Yano [7]) which is invariant under D-homothetic deformations (for D-homothetic deformations, see Tanno [5]). On the other hand, Tricerri and Vanhecke [6] defined a general Bochner curvature tensor with conformal invariance on almost Hermitian manifolds. In this paper we define an extended contact Bochner curvature tensor which is invariant under D-homothetic deformations of contact metric manifolds; we call it the EK-contact Bochner curvature tensor. We show that a contact metric manifold with vanishing EK-contact Bochner curvature tensor is a Sasakian manifold.
DOI : 10.4064/cm-65-1-33-41

Hiroshi Endo 1

1
@article{10_4064_cm_65_1_33_41,
     author = {Hiroshi Endo},
     title = {On an extended contact {Bochner} curvature tensor on contact metric manifolds},
     journal = {Colloquium Mathematicum},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-65-1-33-41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-33-41/}
}
TY  - JOUR
AU  - Hiroshi Endo
TI  - On an extended contact Bochner curvature tensor on contact metric manifolds
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 33
EP  - 41
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-33-41/
DO  - 10.4064/cm-65-1-33-41
LA  - en
ID  - 10_4064_cm_65_1_33_41
ER  - 
%0 Journal Article
%A Hiroshi Endo
%T On an extended contact Bochner curvature tensor on contact metric manifolds
%J Colloquium Mathematicum
%D 1993
%P 33-41
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-33-41/
%R 10.4064/cm-65-1-33-41
%G en
%F 10_4064_cm_65_1_33_41
Hiroshi Endo. On an extended contact Bochner curvature tensor on contact metric manifolds. Colloquium Mathematicum, Tome 65 (1993) no. 1, pp. 33-41. doi : 10.4064/cm-65-1-33-41. http://geodesic.mathdoc.fr/articles/10.4064/cm-65-1-33-41/

Cité par Sources :