Tame $L^p$-multipliers
Colloquium Mathematicum, Tome 64 (1993) no. 2, pp. 303-314.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We call an $L^{p}$-multiplier m tame if for each complex homomorphism χ acting on the space of $L^{p}$ multipliers there is some $γ_{0} ∈ Γ$ and |a| ≤ 1 such that $χ(γm) = am(γ_{0}γ)$ for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of $L^{p}$-improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.
DOI : 10.4064/cm-64-2-303-314

Kathryn Hare 1

1
@article{10_4064_cm_64_2_303_314,
     author = {Kathryn Hare},
     title = {Tame $L^p$-multipliers},
     journal = {Colloquium Mathematicum},
     pages = {303--314},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1993},
     doi = {10.4064/cm-64-2-303-314},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-303-314/}
}
TY  - JOUR
AU  - Kathryn Hare
TI  - Tame $L^p$-multipliers
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 303
EP  - 314
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-303-314/
DO  - 10.4064/cm-64-2-303-314
LA  - fr
ID  - 10_4064_cm_64_2_303_314
ER  - 
%0 Journal Article
%A Kathryn Hare
%T Tame $L^p$-multipliers
%J Colloquium Mathematicum
%D 1993
%P 303-314
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-303-314/
%R 10.4064/cm-64-2-303-314
%G fr
%F 10_4064_cm_64_2_303_314
Kathryn Hare. Tame $L^p$-multipliers. Colloquium Mathematicum, Tome 64 (1993) no. 2, pp. 303-314. doi : 10.4064/cm-64-2-303-314. http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-303-314/

Cité par Sources :