On vector-valued inequalities for Sidon sets and sets of interpolation
Colloquium Mathematicum, Tome 64 (1993) no. 2, pp. 233-244
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let E be a Sidon subset of the integers and suppose X is a Banach space. Then Pisier has shown that E-spectral polynomials with values in X behave like Rademacher sums with respect to $L_p$-norms. We consider the situation when X is a quasi-Banach space. For general quasi-Banach spaces we show that a similar result holds if and only if E is a set of interpolation ($I_0$-set). However, for certain special classes of quasi-Banach spaces we are able to prove such a result for larger sets. Thus if X is restricted to be "natural" then the result holds for all Sidon sets. We also consider spaces with plurisubharmonic norms and introduce the class of analytic Sidon sets.
@article{10_4064_cm_64_2_233_244,
author = {N. Kalton},
title = {On vector-valued inequalities for {Sidon} sets and sets of interpolation},
journal = {Colloquium Mathematicum},
pages = {233--244},
year = {1993},
volume = {64},
number = {2},
doi = {10.4064/cm-64-2-233-244},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-233-244/}
}
TY - JOUR AU - N. Kalton TI - On vector-valued inequalities for Sidon sets and sets of interpolation JO - Colloquium Mathematicum PY - 1993 SP - 233 EP - 244 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-2-233-244/ DO - 10.4064/cm-64-2-233-244 LA - en ID - 10_4064_cm_64_2_233_244 ER -
N. Kalton. On vector-valued inequalities for Sidon sets and sets of interpolation. Colloquium Mathematicum, Tome 64 (1993) no. 2, pp. 233-244. doi: 10.4064/cm-64-2-233-244
Cité par Sources :