On the Betti numbers of the real part of a three-dimensional torus embedding
Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 59-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let X be the three-dimensional, complete, nonsingular, complex torus embedding corresponding to a fan $S ⊆ ℝ^{3}$ and let V be the real part of X (for definitions see [1] or [3]). The aim of this note is to give a simple combinatorial formula for calculating the Betti numbers of V.
@article{10_4064_cm_64_1_59_64,
author = {Jan Ratajski},
title = {On the {Betti} numbers of the real part of a three-dimensional torus embedding},
journal = {Colloquium Mathematicum},
pages = {59--64},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1993},
doi = {10.4064/cm-64-1-59-64},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-59-64/}
}
TY - JOUR AU - Jan Ratajski TI - On the Betti numbers of the real part of a three-dimensional torus embedding JO - Colloquium Mathematicum PY - 1993 SP - 59 EP - 64 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-59-64/ DO - 10.4064/cm-64-1-59-64 LA - en ID - 10_4064_cm_64_1_59_64 ER -
Jan Ratajski. On the Betti numbers of the real part of a three-dimensional torus embedding. Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 59-64. doi: 10.4064/cm-64-1-59-64
Cité par Sources :