On the Betti numbers of the real part of a three-dimensional torus embedding
Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 59-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be the three-dimensional, complete, nonsingular, complex torus embedding corresponding to a fan $S ⊆ ℝ^{3}$ and let V be the real part of X (for definitions see [1] or [3]). The aim of this note is to give a simple combinatorial formula for calculating the Betti numbers of V.
DOI : 10.4064/cm-64-1-59-64

Jan Ratajski 1

1
@article{10_4064_cm_64_1_59_64,
     author = {Jan Ratajski},
     title = {On the {Betti} numbers of the real part of a three-dimensional torus embedding},
     journal = {Colloquium Mathematicum},
     pages = {59--64},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-64-1-59-64},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-59-64/}
}
TY  - JOUR
AU  - Jan Ratajski
TI  - On the Betti numbers of the real part of a three-dimensional torus embedding
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 59
EP  - 64
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-59-64/
DO  - 10.4064/cm-64-1-59-64
LA  - en
ID  - 10_4064_cm_64_1_59_64
ER  - 
%0 Journal Article
%A Jan Ratajski
%T On the Betti numbers of the real part of a three-dimensional torus embedding
%J Colloquium Mathematicum
%D 1993
%P 59-64
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-59-64/
%R 10.4064/cm-64-1-59-64
%G en
%F 10_4064_cm_64_1_59_64
Jan Ratajski. On the Betti numbers of the real part of a three-dimensional torus embedding. Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 59-64. doi : 10.4064/cm-64-1-59-64. http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-59-64/

Cité par Sources :