On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type
Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-64-1-29-40

Mauro Capursi 1 ; Sorin Dragomir 1

1
@article{10_4064_cm_64_1_29_40,
     author = {Mauro Capursi and Sorin Dragomir},
     title = {On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, {Boothby-Wang} fiberings, and real homology type},
     journal = {Colloquium Mathematicum},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-64-1-29-40},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-29-40/}
}
TY  - JOUR
AU  - Mauro Capursi
AU  - Sorin Dragomir
TI  - On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 29
EP  - 40
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-29-40/
DO  - 10.4064/cm-64-1-29-40
LA  - en
ID  - 10_4064_cm_64_1_29_40
ER  - 
%0 Journal Article
%A Mauro Capursi
%A Sorin Dragomir
%T On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type
%J Colloquium Mathematicum
%D 1993
%P 29-40
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-29-40/
%R 10.4064/cm-64-1-29-40
%G en
%F 10_4064_cm_64_1_29_40
Mauro Capursi; Sorin Dragomir. On manifolds admitting metrics which are locally conformal to cosymplectic metrics: their canonical foliations, Boothby-Wang fiberings, and real homology type. Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 29-40. doi : 10.4064/cm-64-1-29-40. http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-29-40/

Cité par Sources :