Vector sets with no repeated differences
Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 129-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the question when a set in a vector space over the rationals, with no differences occurring more than twice, is the union of countably many sets, none containing a difference twice. The answer is "yes" if the set is of size at most $ℵ_2$, "not" if the set is allowed to be of size $(2^{2^{ℵ_0}})^{+}$. It is consistent that the continuum is large, but the statement still holds for every set smaller than continuum.
DOI : 10.4064/cm-64-1-129-134

Péter Komjáth 1

1
@article{10_4064_cm_64_1_129_134,
     author = {P\'eter Komj\'ath},
     title = {Vector sets with no repeated differences},
     journal = {Colloquium Mathematicum},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1993},
     doi = {10.4064/cm-64-1-129-134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-129-134/}
}
TY  - JOUR
AU  - Péter Komjáth
TI  - Vector sets with no repeated differences
JO  - Colloquium Mathematicum
PY  - 1993
SP  - 129
EP  - 134
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-129-134/
DO  - 10.4064/cm-64-1-129-134
LA  - en
ID  - 10_4064_cm_64_1_129_134
ER  - 
%0 Journal Article
%A Péter Komjáth
%T Vector sets with no repeated differences
%J Colloquium Mathematicum
%D 1993
%P 129-134
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-129-134/
%R 10.4064/cm-64-1-129-134
%G en
%F 10_4064_cm_64_1_129_134
Péter Komjáth. Vector sets with no repeated differences. Colloquium Mathematicum, Tome 64 (1993) no. 1, pp. 129-134. doi : 10.4064/cm-64-1-129-134. http://geodesic.mathdoc.fr/articles/10.4064/cm-64-1-129-134/

Cité par Sources :