Some Borel measures associated with the generalized Collatz mapping
Colloquium Mathematicum, Tome 63 (1992) no. 2, pp. 191-202
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper is a continuation of a recent paper [2], in which the authors studied some Markov matrices arising from a mapping T:ℤ → ℤ, which generalizes the famous 3x+1 mapping of Collatz. We extended T to a mapping of the polyadic numbers $\widehat{ℤ}$ and construct finitely many ergodic Borel measures on $\widehat{ℤ}$ which heuristically explain the limiting frequencies in congruence classes, observed for integer trajectories.
@article{10_4064_cm_63_2_191_202,
author = {K. Matthews},
title = {Some {Borel} measures associated with the generalized {Collatz} mapping},
journal = {Colloquium Mathematicum},
pages = {191--202},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {1992},
doi = {10.4064/cm-63-2-191-202},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-63-2-191-202/}
}
TY - JOUR AU - K. Matthews TI - Some Borel measures associated with the generalized Collatz mapping JO - Colloquium Mathematicum PY - 1992 SP - 191 EP - 202 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-63-2-191-202/ DO - 10.4064/cm-63-2-191-202 LA - en ID - 10_4064_cm_63_2_191_202 ER -
K. Matthews. Some Borel measures associated with the generalized Collatz mapping. Colloquium Mathematicum, Tome 63 (1992) no. 2, pp. 191-202. doi: 10.4064/cm-63-2-191-202
Cité par Sources :