Some Borel measures associated with the generalized Collatz mapping
Colloquium Mathematicum, Tome 63 (1992) no. 2, pp. 191-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper is a continuation of a recent paper [2], in which the authors studied some Markov matrices arising from a mapping T:ℤ → ℤ, which generalizes the famous 3x+1 mapping of Collatz. We extended T to a mapping of the polyadic numbers $\widehat{ℤ}$ and construct finitely many ergodic Borel measures on $\widehat{ℤ}$ which heuristically explain the limiting frequencies in congruence classes, observed for integer trajectories.
DOI : 10.4064/cm-63-2-191-202

K. Matthews 1

1
@article{10_4064_cm_63_2_191_202,
     author = {K. Matthews},
     title = {Some {Borel} measures associated with the generalized {Collatz} mapping},
     journal = {Colloquium Mathematicum},
     pages = {191--202},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1992},
     doi = {10.4064/cm-63-2-191-202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-63-2-191-202/}
}
TY  - JOUR
AU  - K. Matthews
TI  - Some Borel measures associated with the generalized Collatz mapping
JO  - Colloquium Mathematicum
PY  - 1992
SP  - 191
EP  - 202
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-63-2-191-202/
DO  - 10.4064/cm-63-2-191-202
LA  - en
ID  - 10_4064_cm_63_2_191_202
ER  - 
%0 Journal Article
%A K. Matthews
%T Some Borel measures associated with the generalized Collatz mapping
%J Colloquium Mathematicum
%D 1992
%P 191-202
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-63-2-191-202/
%R 10.4064/cm-63-2-191-202
%G en
%F 10_4064_cm_63_2_191_202
K. Matthews. Some Borel measures associated with the generalized Collatz mapping. Colloquium Mathematicum, Tome 63 (1992) no. 2, pp. 191-202. doi : 10.4064/cm-63-2-191-202. http://geodesic.mathdoc.fr/articles/10.4064/cm-63-2-191-202/

Cité par Sources :