On finite minimal non-p-supersoluble groups
Colloquium Mathematicum, Tome 63 (1992) no. 1, pp. 119-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If ℱ is a class of groups, then a minimal non-ℱ-group (a dual minimal non-ℱ-group resp.) is a group which is not in ℱ but any of its proper subgroups (factor groups resp.) is in ℱ. In many problems of classification of groups it is sometimes useful to know structure properties of classes of minimal non-ℱ-groups and dual minimal non-ℱ-groups. In fact, the literature on group theory contains many results directed to classify some of the most remarkable among the aforesaid classes. In particular, V. N. Semenchuk in [12] and [13] examined the structure of minimal non-ℱ-groups for ℱ a formation, proving, among other results, that if ℱ is a saturated formation, then the structure of finite soluble, minimal non-ℱ-groups can be determined provided that the structure of finite soluble, minimal non-ℱ-groups with trivial Frattini subgroup is known. In this paper we use this result with regard to the formation of p-supersoluble groups (p prime), starting from the classification of finite soluble, minimal non-p-supersoluble groups with trivial Frattini subgroup given by N. P. Kontorovich and V. P. Nagrebetskiĭ ([10]). The second part of this paper deals with non-soluble, minimal non-p-supersoluble finite groups. The problem is reduced to the case of simple groups. We classify the simple, minimal non-p-supersoluble groups, p being the smallest odd prime divisor of the group order, and provide a characterization of minimal simple groups. All the groups considered are finite.
DOI : 10.4064/cm-63-1-119-131

Fernando Tuccillo 1

1
@article{10_4064_cm_63_1_119_131,
     author = {Fernando Tuccillo},
     title = {On finite minimal non-p-supersoluble groups},
     journal = {Colloquium Mathematicum},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1992},
     doi = {10.4064/cm-63-1-119-131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-63-1-119-131/}
}
TY  - JOUR
AU  - Fernando Tuccillo
TI  - On finite minimal non-p-supersoluble groups
JO  - Colloquium Mathematicum
PY  - 1992
SP  - 119
EP  - 131
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-63-1-119-131/
DO  - 10.4064/cm-63-1-119-131
LA  - en
ID  - 10_4064_cm_63_1_119_131
ER  - 
%0 Journal Article
%A Fernando Tuccillo
%T On finite minimal non-p-supersoluble groups
%J Colloquium Mathematicum
%D 1992
%P 119-131
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-63-1-119-131/
%R 10.4064/cm-63-1-119-131
%G en
%F 10_4064_cm_63_1_119_131
Fernando Tuccillo. On finite minimal non-p-supersoluble groups. Colloquium Mathematicum, Tome 63 (1992) no. 1, pp. 119-131. doi : 10.4064/cm-63-1-119-131. http://geodesic.mathdoc.fr/articles/10.4064/cm-63-1-119-131/

Cité par Sources :