The number of countable isomorphism types of complete extensions of the theory of Boolean algebras
Colloquium Mathematicum, Tome 62 (1991) no. 2, pp. 181-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There is a conjecture of Vaught [17] which states: Without The Generalized Continuum Hypothesis one can prove the existence of a complete theory with exactly $ω_1$ nonisomorphic, denumerable models. In this paper we show that there is no such theory in the class of complete extensions of the theory of Boolean algebras. More precisely, any complete extension of the theory of Boolean algebras has either 1 or $2^ω$ nonisomorphic, countable models. Thus we answer this conjecture in the negative for any complete extension of the theory of Boolean algebras. In Rosenstein [15] there is a similar conjecture that any countable complete theory which has uncountably many denumerable models must have $2^ω$ nonisomorphic denumerable models, and this is true without using the Continuum Hypothesis. This paper is an excerpt of the author's thesis, which was written under the guidance of Professor G. C. Nelson. A more detailed exposition of the material may be found there.
DOI : 10.4064/cm-62-2-181-187

Paul Iverson 1

1
@article{10_4064_cm_62_2_181_187,
     author = {Paul Iverson},
     title = {The number of countable isomorphism types of complete extensions of the theory of {Boolean} algebras},
     journal = {Colloquium Mathematicum},
     pages = {181--187},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1991},
     doi = {10.4064/cm-62-2-181-187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-181-187/}
}
TY  - JOUR
AU  - Paul Iverson
TI  - The number of countable isomorphism types of complete extensions of the theory of Boolean algebras
JO  - Colloquium Mathematicum
PY  - 1991
SP  - 181
EP  - 187
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-181-187/
DO  - 10.4064/cm-62-2-181-187
LA  - en
ID  - 10_4064_cm_62_2_181_187
ER  - 
%0 Journal Article
%A Paul Iverson
%T The number of countable isomorphism types of complete extensions of the theory of Boolean algebras
%J Colloquium Mathematicum
%D 1991
%P 181-187
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-181-187/
%R 10.4064/cm-62-2-181-187
%G en
%F 10_4064_cm_62_2_181_187
Paul Iverson. The number of countable isomorphism types of complete extensions of the theory of Boolean algebras. Colloquium Mathematicum, Tome 62 (1991) no. 2, pp. 181-187. doi : 10.4064/cm-62-2-181-187. http://geodesic.mathdoc.fr/articles/10.4064/cm-62-2-181-187/

Cité par Sources :