Contractive projections on the fixed point set of $L_∞$ contractions
Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 91-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Keywords:
$L_∞$, projection, contraction, binary ball intersection, ergodic, positive operator, fixed point
Affiliations des auteurs :
Michael Lin 1 ; Robert Sine 1
@article{10_4064_cm_62_1_91_96,
author = {Michael Lin and Robert Sine},
title = {Contractive projections on the fixed point set of $L_\ensuremath{\infty}$ contractions},
journal = {Colloquium Mathematicum},
pages = {91--96},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {1991},
doi = {10.4064/cm-62-1-91-96},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/}
}
TY - JOUR AU - Michael Lin AU - Robert Sine TI - Contractive projections on the fixed point set of $L_∞$ contractions JO - Colloquium Mathematicum PY - 1991 SP - 91 EP - 96 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/ DO - 10.4064/cm-62-1-91-96 LA - en ID - 10_4064_cm_62_1_91_96 ER -
%0 Journal Article %A Michael Lin %A Robert Sine %T Contractive projections on the fixed point set of $L_∞$ contractions %J Colloquium Mathematicum %D 1991 %P 91-96 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/ %R 10.4064/cm-62-1-91-96 %G en %F 10_4064_cm_62_1_91_96
Michael Lin; Robert Sine. Contractive projections on the fixed point set of $L_∞$ contractions. Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 91-96. doi: 10.4064/cm-62-1-91-96
Cité par Sources :