Contractive projections on the fixed point set of $L_∞$ contractions
Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 91-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-62-1-91-96
Keywords: $L_∞$, projection, contraction, binary ball intersection, ergodic, positive operator, fixed point

Michael Lin 1 ; Robert Sine 1

1
@article{10_4064_cm_62_1_91_96,
     author = {Michael Lin and Robert Sine},
     title = {Contractive projections on the fixed point set of $L_\ensuremath{\infty}$ contractions},
     journal = {Colloquium Mathematicum},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1991},
     doi = {10.4064/cm-62-1-91-96},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/}
}
TY  - JOUR
AU  - Michael Lin
AU  - Robert Sine
TI  - Contractive projections on the fixed point set of $L_∞$ contractions
JO  - Colloquium Mathematicum
PY  - 1991
SP  - 91
EP  - 96
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/
DO  - 10.4064/cm-62-1-91-96
LA  - en
ID  - 10_4064_cm_62_1_91_96
ER  - 
%0 Journal Article
%A Michael Lin
%A Robert Sine
%T Contractive projections on the fixed point set of $L_∞$ contractions
%J Colloquium Mathematicum
%D 1991
%P 91-96
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/
%R 10.4064/cm-62-1-91-96
%G en
%F 10_4064_cm_62_1_91_96
Michael Lin; Robert Sine. Contractive projections on the fixed point set of $L_∞$ contractions. Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 91-96. doi : 10.4064/cm-62-1-91-96. http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-91-96/

Cité par Sources :