Partially additive states on orthomodular posets
Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 7-14.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We fix a Boolean subalgebra B of an orthomodular poset P and study the mappings s:P → [0,1] which respect the ordering and the orthocomplementation in P and which are additive on B. We call such functions B-states on P. We first show that every P possesses "enough" two-valued B-states. This improves the main result in [13], where B is the centre of P. Moreover, it allows us to construct a closure-space representation of orthomodular lattices. We do this in the third section. This result may also be viewed as a generalization of [6]. Then we prove an extension theorem for B-states giving, as a by-product, a topological proof of a classical Boolean result.
DOI : 10.4064/cm-62-1-7-14

Josef Tkadlec 1

1
@article{10_4064_cm_62_1_7_14,
     author = {Josef Tkadlec},
     title = {Partially additive states on orthomodular posets},
     journal = {Colloquium Mathematicum},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1991},
     doi = {10.4064/cm-62-1-7-14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-7-14/}
}
TY  - JOUR
AU  - Josef Tkadlec
TI  - Partially additive states on orthomodular posets
JO  - Colloquium Mathematicum
PY  - 1991
SP  - 7
EP  - 14
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-7-14/
DO  - 10.4064/cm-62-1-7-14
LA  - en
ID  - 10_4064_cm_62_1_7_14
ER  - 
%0 Journal Article
%A Josef Tkadlec
%T Partially additive states on orthomodular posets
%J Colloquium Mathematicum
%D 1991
%P 7-14
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-7-14/
%R 10.4064/cm-62-1-7-14
%G en
%F 10_4064_cm_62_1_7_14
Josef Tkadlec. Partially additive states on orthomodular posets. Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 7-14. doi : 10.4064/cm-62-1-7-14. http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-7-14/

Cité par Sources :