A Helson set of uniqueness but not of synthesis
Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 67-71.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In [3] I showed that there are Helson sets on the circle
DOI : 10.4064/cm-62-1-67-71

T. Körner 1

1
@article{10_4064_cm_62_1_67_71,
     author = {T. K\"orner},
     title = {A {Helson} set of uniqueness but not of synthesis},
     journal = {Colloquium Mathematicum},
     pages = {67--71},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1991},
     doi = {10.4064/cm-62-1-67-71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-67-71/}
}
TY  - JOUR
AU  - T. Körner
TI  - A Helson set of uniqueness but not of synthesis
JO  - Colloquium Mathematicum
PY  - 1991
SP  - 67
EP  - 71
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-67-71/
DO  - 10.4064/cm-62-1-67-71
LA  - en
ID  - 10_4064_cm_62_1_67_71
ER  - 
%0 Journal Article
%A T. Körner
%T A Helson set of uniqueness but not of synthesis
%J Colloquium Mathematicum
%D 1991
%P 67-71
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-67-71/
%R 10.4064/cm-62-1-67-71
%G en
%F 10_4064_cm_62_1_67_71
T. Körner. A Helson set of uniqueness but not of synthesis. Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 67-71. doi : 10.4064/cm-62-1-67-71. http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-67-71/

Cité par Sources :