Are EC-spaces AE(metrizable)?
Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 135-143.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-62-1-135-143
Keywords: AE(metrizable), $k_ω$-space, equiconnected, embedding

Carlos Borges 1

1
@article{10_4064_cm_62_1_135_143,
     author = {Carlos Borges},
     title = {Are {EC-spaces} {AE(metrizable)?}},
     journal = {Colloquium Mathematicum},
     pages = {135--143},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1991},
     doi = {10.4064/cm-62-1-135-143},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-135-143/}
}
TY  - JOUR
AU  - Carlos Borges
TI  - Are EC-spaces AE(metrizable)?
JO  - Colloquium Mathematicum
PY  - 1991
SP  - 135
EP  - 143
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-135-143/
DO  - 10.4064/cm-62-1-135-143
LA  - en
ID  - 10_4064_cm_62_1_135_143
ER  - 
%0 Journal Article
%A Carlos Borges
%T Are EC-spaces AE(metrizable)?
%J Colloquium Mathematicum
%D 1991
%P 135-143
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-135-143/
%R 10.4064/cm-62-1-135-143
%G en
%F 10_4064_cm_62_1_135_143
Carlos Borges. Are EC-spaces AE(metrizable)?. Colloquium Mathematicum, Tome 62 (1991) no. 1, pp. 135-143. doi : 10.4064/cm-62-1-135-143. http://geodesic.mathdoc.fr/articles/10.4064/cm-62-1-135-143/

Cité par Sources :