Subsystems of the Schauder system whose orthonormalizations are Schauder bases for $L^p[0,1]$
Colloquium Mathematicum, Tome 57 (1989) no. 1, pp. 93-101.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-57-1-93-101

Robert E. Zink 1

1
@article{10_4064_cm_57_1_93_101,
     author = {Robert E. Zink},
     title = {Subsystems of the {Schauder} system whose orthonormalizations are {Schauder} bases for $L^p[0,1]$},
     journal = {Colloquium Mathematicum},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {1989},
     doi = {10.4064/cm-57-1-93-101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-57-1-93-101/}
}
TY  - JOUR
AU  - Robert E. Zink
TI  - Subsystems of the Schauder system whose orthonormalizations are Schauder bases for $L^p[0,1]$
JO  - Colloquium Mathematicum
PY  - 1989
SP  - 93
EP  - 101
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-57-1-93-101/
DO  - 10.4064/cm-57-1-93-101
LA  - en
ID  - 10_4064_cm_57_1_93_101
ER  - 
%0 Journal Article
%A Robert E. Zink
%T Subsystems of the Schauder system whose orthonormalizations are Schauder bases for $L^p[0,1]$
%J Colloquium Mathematicum
%D 1989
%P 93-101
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-57-1-93-101/
%R 10.4064/cm-57-1-93-101
%G en
%F 10_4064_cm_57_1_93_101
Robert E. Zink. Subsystems of the Schauder system whose orthonormalizations are Schauder bases for $L^p[0,1]$. Colloquium Mathematicum, Tome 57 (1989) no. 1, pp. 93-101. doi : 10.4064/cm-57-1-93-101. http://geodesic.mathdoc.fr/articles/10.4064/cm-57-1-93-101/

Cité par Sources :