Most Markov operators on C(X) are quasi-compact and uniquely ergodic
Colloquium Mathematicum, Tome 52 (1987) no. 2, pp. 277-280.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-52-2-277-280

Ryszard Rębowski 1

1
@article{10_4064_cm_52_2_277_280,
     author = {Ryszard R\k{e}bowski},
     title = {Most {Markov} operators on {C(X)} are quasi-compact and uniquely ergodic},
     journal = {Colloquium Mathematicum},
     pages = {277--280},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {1987},
     doi = {10.4064/cm-52-2-277-280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-52-2-277-280/}
}
TY  - JOUR
AU  - Ryszard Rębowski
TI  - Most Markov operators on C(X) are quasi-compact and uniquely ergodic
JO  - Colloquium Mathematicum
PY  - 1987
SP  - 277
EP  - 280
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-52-2-277-280/
DO  - 10.4064/cm-52-2-277-280
LA  - en
ID  - 10_4064_cm_52_2_277_280
ER  - 
%0 Journal Article
%A Ryszard Rębowski
%T Most Markov operators on C(X) are quasi-compact and uniquely ergodic
%J Colloquium Mathematicum
%D 1987
%P 277-280
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-52-2-277-280/
%R 10.4064/cm-52-2-277-280
%G en
%F 10_4064_cm_52_2_277_280
Ryszard Rębowski. Most Markov operators on C(X) are quasi-compact and uniquely ergodic. Colloquium Mathematicum, Tome 52 (1987) no. 2, pp. 277-280. doi : 10.4064/cm-52-2-277-280. http://geodesic.mathdoc.fr/articles/10.4064/cm-52-2-277-280/

Cité par Sources :