A convolution property of the Cantor-Lebesgue measure
Colloquium Mathematicum, Tome 47 (1982) no. 1, pp. 113-117.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-47-1-113-117

Daniel M. Oberlin 1

1
@article{10_4064_cm_47_1_113_117,
     author = {Daniel M. Oberlin},
     title = {A convolution property of the {Cantor-Lebesgue} measure},
     journal = {Colloquium Mathematicum},
     pages = {113--117},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1982},
     doi = {10.4064/cm-47-1-113-117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-47-1-113-117/}
}
TY  - JOUR
AU  - Daniel M. Oberlin
TI  - A convolution property of the Cantor-Lebesgue measure
JO  - Colloquium Mathematicum
PY  - 1982
SP  - 113
EP  - 117
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-47-1-113-117/
DO  - 10.4064/cm-47-1-113-117
LA  - en
ID  - 10_4064_cm_47_1_113_117
ER  - 
%0 Journal Article
%A Daniel M. Oberlin
%T A convolution property of the Cantor-Lebesgue measure
%J Colloquium Mathematicum
%D 1982
%P 113-117
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-47-1-113-117/
%R 10.4064/cm-47-1-113-117
%G en
%F 10_4064_cm_47_1_113_117
Daniel M. Oberlin. A convolution property of the Cantor-Lebesgue measure. Colloquium Mathematicum, Tome 47 (1982) no. 1, pp. 113-117. doi : 10.4064/cm-47-1-113-117. http://geodesic.mathdoc.fr/articles/10.4064/cm-47-1-113-117/

Cité par Sources :