On continua having three types of open subsets
Colloquium Mathematicum, Tome 45 (1981) no. 2, pp. 221-225.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-45-2-221-225

Witold Bula 1

1
@article{10_4064_cm_45_2_221_225,
     author = {Witold Bula},
     title = {On continua having three types of open subsets},
     journal = {Colloquium Mathematicum},
     pages = {221--225},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1981},
     doi = {10.4064/cm-45-2-221-225},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-45-2-221-225/}
}
TY  - JOUR
AU  - Witold Bula
TI  - On continua having three types of open subsets
JO  - Colloquium Mathematicum
PY  - 1981
SP  - 221
EP  - 225
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-45-2-221-225/
DO  - 10.4064/cm-45-2-221-225
LA  - en
ID  - 10_4064_cm_45_2_221_225
ER  - 
%0 Journal Article
%A Witold Bula
%T On continua having three types of open subsets
%J Colloquium Mathematicum
%D 1981
%P 221-225
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-45-2-221-225/
%R 10.4064/cm-45-2-221-225
%G en
%F 10_4064_cm_45_2_221_225
Witold Bula. On continua having three types of open subsets. Colloquium Mathematicum, Tome 45 (1981) no. 2, pp. 221-225. doi : 10.4064/cm-45-2-221-225. http://geodesic.mathdoc.fr/articles/10.4064/cm-45-2-221-225/

Cité par Sources :