The unit ball of every infinite-dimensional normed linear space contains a (1+ɛ)-separated sequence
Colloquium Mathematicum, Tome 44 (1981) no. 1, pp. 105-109
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_cm_44_1_105_109,
author = {J. Elton and E. Odell},
title = {The unit ball of every infinite-dimensional normed linear space contains a (1+{\varepsilon})-separated sequence},
journal = {Colloquium Mathematicum},
pages = {105--109},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {1981},
doi = {10.4064/cm-44-1-105-109},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-44-1-105-109/}
}
TY - JOUR AU - J. Elton AU - E. Odell TI - The unit ball of every infinite-dimensional normed linear space contains a (1+ɛ)-separated sequence JO - Colloquium Mathematicum PY - 1981 SP - 105 EP - 109 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-44-1-105-109/ DO - 10.4064/cm-44-1-105-109 LA - en ID - 10_4064_cm_44_1_105_109 ER -
%0 Journal Article %A J. Elton %A E. Odell %T The unit ball of every infinite-dimensional normed linear space contains a (1+ɛ)-separated sequence %J Colloquium Mathematicum %D 1981 %P 105-109 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-44-1-105-109/ %R 10.4064/cm-44-1-105-109 %G en %F 10_4064_cm_44_1_105_109
J. Elton; E. Odell. The unit ball of every infinite-dimensional normed linear space contains a (1+ɛ)-separated sequence. Colloquium Mathematicum, Tome 44 (1981) no. 1, pp. 105-109. doi: 10.4064/cm-44-1-105-109
Cité par Sources :