A nondegenerate σ-discrete Moore space which is connected
Colloquium Mathematicum, Tome 41 (1979) no. 2, pp. 207-209.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-41-2-207-209

Peter de Caux 1

1
@article{10_4064_cm_41_2_207_209,
     author = {Peter de Caux},
     title = {A nondegenerate \ensuremath{\sigma}-discrete {Moore} space which is connected},
     journal = {Colloquium Mathematicum},
     pages = {207--209},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {1979},
     doi = {10.4064/cm-41-2-207-209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-41-2-207-209/}
}
TY  - JOUR
AU  - Peter de Caux
TI  - A nondegenerate σ-discrete Moore space which is connected
JO  - Colloquium Mathematicum
PY  - 1979
SP  - 207
EP  - 209
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-41-2-207-209/
DO  - 10.4064/cm-41-2-207-209
LA  - en
ID  - 10_4064_cm_41_2_207_209
ER  - 
%0 Journal Article
%A Peter de Caux
%T A nondegenerate σ-discrete Moore space which is connected
%J Colloquium Mathematicum
%D 1979
%P 207-209
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-41-2-207-209/
%R 10.4064/cm-41-2-207-209
%G en
%F 10_4064_cm_41_2_207_209
Peter de Caux. A nondegenerate σ-discrete Moore space which is connected. Colloquium Mathematicum, Tome 41 (1979) no. 2, pp. 207-209. doi : 10.4064/cm-41-2-207-209. http://geodesic.mathdoc.fr/articles/10.4064/cm-41-2-207-209/

Cité par Sources :