Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_cm_39_2_351_359, author = {Anthony To-Ming Lau}, title = {Operators which commute with convolutions on subspaces of $L_\ensuremath{\infty}(G)$}, journal = {Colloquium Mathematicum}, pages = {351--359}, publisher = {mathdoc}, volume = {39}, number = {2}, year = {1978}, doi = {10.4064/cm-39-2-351-359}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/} }
TY - JOUR AU - Anthony To-Ming Lau TI - Operators which commute with convolutions on subspaces of $L_∞(G)$ JO - Colloquium Mathematicum PY - 1978 SP - 351 EP - 359 VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/ DO - 10.4064/cm-39-2-351-359 LA - en ID - 10_4064_cm_39_2_351_359 ER -
%0 Journal Article %A Anthony To-Ming Lau %T Operators which commute with convolutions on subspaces of $L_∞(G)$ %J Colloquium Mathematicum %D 1978 %P 351-359 %V 39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/ %R 10.4064/cm-39-2-351-359 %G en %F 10_4064_cm_39_2_351_359
Anthony To-Ming Lau. Operators which commute with convolutions on subspaces of $L_∞(G)$. Colloquium Mathematicum, Tome 39 (1978) no. 2, pp. 351-359. doi : 10.4064/cm-39-2-351-359. http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/
Cité par Sources :