Operators which commute with convolutions on subspaces of $L_∞(G)$
Colloquium Mathematicum, Tome 39 (1978) no. 2, pp. 351-359.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-39-2-351-359

Anthony To-Ming Lau 1

1
@article{10_4064_cm_39_2_351_359,
     author = {Anthony To-Ming Lau},
     title = {Operators which commute with convolutions on subspaces of $L_\ensuremath{\infty}(G)$},
     journal = {Colloquium Mathematicum},
     pages = {351--359},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {1978},
     doi = {10.4064/cm-39-2-351-359},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/}
}
TY  - JOUR
AU  - Anthony To-Ming Lau
TI  - Operators which commute with convolutions on subspaces of $L_∞(G)$
JO  - Colloquium Mathematicum
PY  - 1978
SP  - 351
EP  - 359
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/
DO  - 10.4064/cm-39-2-351-359
LA  - en
ID  - 10_4064_cm_39_2_351_359
ER  - 
%0 Journal Article
%A Anthony To-Ming Lau
%T Operators which commute with convolutions on subspaces of $L_∞(G)$
%J Colloquium Mathematicum
%D 1978
%P 351-359
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/
%R 10.4064/cm-39-2-351-359
%G en
%F 10_4064_cm_39_2_351_359
Anthony To-Ming Lau. Operators which commute with convolutions on subspaces of $L_∞(G)$. Colloquium Mathematicum, Tome 39 (1978) no. 2, pp. 351-359. doi : 10.4064/cm-39-2-351-359. http://geodesic.mathdoc.fr/articles/10.4064/cm-39-2-351-359/

Cité par Sources :