There are absolute ultrafilters on N which are not minimal
Colloquium Mathematicum, Tome 37 (1971) no. 1, pp. 29-34.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-37-1-29-34

A. Kucia 1 ; A. Szymański 1

1
@article{10_4064_cm_37_1_29_34,
     author = {A. Kucia and A. Szyma\'nski},
     title = {There are absolute ultrafilters on {N} which are not minimal},
     journal = {Colloquium Mathematicum},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1971},
     doi = {10.4064/cm-37-1-29-34},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-37-1-29-34/}
}
TY  - JOUR
AU  - A. Kucia
AU  - A. Szymański
TI  - There are absolute ultrafilters on N which are not minimal
JO  - Colloquium Mathematicum
PY  - 1971
SP  - 29
EP  - 34
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-37-1-29-34/
DO  - 10.4064/cm-37-1-29-34
LA  - en
ID  - 10_4064_cm_37_1_29_34
ER  - 
%0 Journal Article
%A A. Kucia
%A A. Szymański
%T There are absolute ultrafilters on N which are not minimal
%J Colloquium Mathematicum
%D 1971
%P 29-34
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-37-1-29-34/
%R 10.4064/cm-37-1-29-34
%G en
%F 10_4064_cm_37_1_29_34
A. Kucia; A. Szymański. There are absolute ultrafilters on N which are not minimal. Colloquium Mathematicum, Tome 37 (1971) no. 1, pp. 29-34. doi : 10.4064/cm-37-1-29-34. http://geodesic.mathdoc.fr/articles/10.4064/cm-37-1-29-34/

Cité par Sources :