The topology of the unit interval is not uniquely determined by its continuous self maps among set systems
Colloquium Mathematicum, Tome 31 (1974) no. 2, pp. 179-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_cm_31_2_179_188,
author = {Ji\v{r}{\'\i} Rosick\'y},
title = {The topology of the unit interval is not uniquely determined by its continuous self maps among set systems},
journal = {Colloquium Mathematicum},
pages = {179--188},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {1974},
doi = {10.4064/cm-31-2-179-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-31-2-179-188/}
}
TY - JOUR AU - Jiří Rosický TI - The topology of the unit interval is not uniquely determined by its continuous self maps among set systems JO - Colloquium Mathematicum PY - 1974 SP - 179 EP - 188 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-31-2-179-188/ DO - 10.4064/cm-31-2-179-188 LA - en ID - 10_4064_cm_31_2_179_188 ER -
%0 Journal Article %A Jiří Rosický %T The topology of the unit interval is not uniquely determined by its continuous self maps among set systems %J Colloquium Mathematicum %D 1974 %P 179-188 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-31-2-179-188/ %R 10.4064/cm-31-2-179-188 %G en %F 10_4064_cm_31_2_179_188
Jiří Rosický. The topology of the unit interval is not uniquely determined by its continuous self maps among set systems. Colloquium Mathematicum, Tome 31 (1974) no. 2, pp. 179-188. doi: 10.4064/cm-31-2-179-188
Cité par Sources :