The class of algebras in which weak independence is equivalent to direct sums independence
Colloquium Mathematicum, Tome 30 (1974) no. 2, pp. 187-191.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-30-2-187-191

Robert M. Vancko 1

1
@article{10_4064_cm_30_2_187_191,
     author = {Robert M. Vancko},
     title = {The class of algebras in which weak independence is equivalent to direct sums independence},
     journal = {Colloquium Mathematicum},
     pages = {187--191},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1974},
     doi = {10.4064/cm-30-2-187-191},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-30-2-187-191/}
}
TY  - JOUR
AU  - Robert M. Vancko
TI  - The class of algebras in which weak independence is equivalent to direct sums independence
JO  - Colloquium Mathematicum
PY  - 1974
SP  - 187
EP  - 191
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-30-2-187-191/
DO  - 10.4064/cm-30-2-187-191
LA  - en
ID  - 10_4064_cm_30_2_187_191
ER  - 
%0 Journal Article
%A Robert M. Vancko
%T The class of algebras in which weak independence is equivalent to direct sums independence
%J Colloquium Mathematicum
%D 1974
%P 187-191
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-30-2-187-191/
%R 10.4064/cm-30-2-187-191
%G en
%F 10_4064_cm_30_2_187_191
Robert M. Vancko. The class of algebras in which weak independence is equivalent to direct sums independence. Colloquium Mathematicum, Tome 30 (1974) no. 2, pp. 187-191. doi : 10.4064/cm-30-2-187-191. http://geodesic.mathdoc.fr/articles/10.4064/cm-30-2-187-191/

Cité par Sources :