Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable
Colloquium Mathematicum, Tome 28 (1973) no. 1, pp. 57-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/cm-28-1-57-67

Z. Ogrodzka 1

1
@article{10_4064_cm_28_1_57_67,
     author = {Z. Ogrodzka},
     title = {Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable},
     journal = {Colloquium Mathematicum},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1973},
     doi = {10.4064/cm-28-1-57-67},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/}
}
TY  - JOUR
AU  - Z. Ogrodzka
TI  - Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable
JO  - Colloquium Mathematicum
PY  - 1973
SP  - 57
EP  - 67
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/
DO  - 10.4064/cm-28-1-57-67
LA  - en
ID  - 10_4064_cm_28_1_57_67
ER  - 
%0 Journal Article
%A Z. Ogrodzka
%T Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable
%J Colloquium Mathematicum
%D 1973
%P 57-67
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/
%R 10.4064/cm-28-1-57-67
%G en
%F 10_4064_cm_28_1_57_67
Z. Ogrodzka. Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable. Colloquium Mathematicum, Tome 28 (1973) no. 1, pp. 57-67. doi : 10.4064/cm-28-1-57-67. http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/

Cité par Sources :