Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_cm_28_1_57_67, author = {Z. Ogrodzka}, title = {Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable}, journal = {Colloquium Mathematicum}, pages = {57--67}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {1973}, doi = {10.4064/cm-28-1-57-67}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/} }
TY - JOUR AU - Z. Ogrodzka TI - Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable JO - Colloquium Mathematicum PY - 1973 SP - 57 EP - 67 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/ DO - 10.4064/cm-28-1-57-67 LA - en ID - 10_4064_cm_28_1_57_67 ER -
%0 Journal Article %A Z. Ogrodzka %T Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable %J Colloquium Mathematicum %D 1973 %P 57-67 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/ %R 10.4064/cm-28-1-57-67 %G en %F 10_4064_cm_28_1_57_67
Z. Ogrodzka. Every paracompact $C^m$-manifold modelled on the infinite countable product of lines is $C^m$-stable. Colloquium Mathematicum, Tome 28 (1973) no. 1, pp. 57-67. doi : 10.4064/cm-28-1-57-67. http://geodesic.mathdoc.fr/articles/10.4064/cm-28-1-57-67/
Cité par Sources :